IMProv project preparation

Presented by MassSpecStudio Development Team

Introduction

- Overview of IMProv for IMP and PMI.
- Getting Started with the sample project (PRC2) on github.
- Prepare IMP Topology and Config files using MassSpecStudio.
- Deployment of the IMProv project on AWS, Cedar or PC.

Activity Diagram

- Stage 1 Gathering data
- Stage 2 Representation of subunits and translation of the data into spatial restraints
- Stage 3 Sampling
- Stage 4 Analysis

Overview

- Create a new Integrative modeling project
 - Add Proteins.
 - Add Protein Topology
 - Add Link Data
 - HX-XL Classification
 - Configure IMP
- Amendments
 - Adjustments to existing IMP project.
- Deployment of the Project
 - Perform a modeling run.

Create a new Integrative modeling project

- Familiarize yourself with the IMProv wizard steps.
- The goal here is to produce the Topology and ConfigImp.yaml files.
- Pull together the various raw data files needed for the modeling run.
- Obtain the python driver script that reads the ConfigImp.yaml file
- Understand the folder structure of the export bundle and where the files reside.

New Project

IMProv (Integrative Modeling Platform)

Name	Sequence	File Path	Тороlоду	Ne
				Ed
				Select F/
				Select F
				Fetch P
				Remo
			into ono roprocontativo	

 \times

• Add Proteins.

- Add Protein Topology
- Add Link Data
- HX-XL Classification
- Configure IMP

Name	Sequence	File Path	Topology	New
sp P52732 EG5_HUMAN Kinesin-like protein EG5 OS=Homo sapiens OX=9606 GN=EG5 PE=1 SV=2	Hover to view	C:\tmp\mss_proj \eg5_hx_orig.fasta	Browse Manage	Edit Select FAS Select PD Fetch PD Remov

 \times

• Add Proteins.

- Add Protein Topology
- Add Link Data
- HX-XL Classification
- Configure IMP

New IMPort	Project								×
Mad Protein	5						_		×
Protein Name: Sequence:	sp P52732 E0	G5_HUN	MAN Kinesin-li	ke protein E	G5 OS=Hon	no sapiens OX=9606 G	I		
PDB File	PDB Offset	Chain	Rigid Body ID	Seq. Range	Bead Size	EM Residue/Gaussian		Add	
	0		0	1 - 385	10	10	[Edit	
								Remov	e
								Select PD	B(s)
								Fetch PD	B(S)
/							>		
							-		
						Cancel] [OK	
								Next	

- Add Proteins.
- Add Protein Topology
- Add Link Data
- HX-XL Classification
- Configure IMP

🐏 Topology	🚈 Add Topology	- 🗆 X	
Protein Name:	PDB File:	Browse.	1
equence:	PDB Offset:	0	
PDB File	Chain ID:		Add
	Rigid Body:	0	Edit
	Sequence Start:	1	Remove
	Sequence End:	385	Select PDB(s
	Bead Size:	10	Fetch PDB(s
c	EM Residues per Gaussian:	10	
	Color:	Black 👻	
		Cancel OK	ОК

- Add Proteins.
- Add Protein Topology
- Add Link Data
- HX-XL Classification
- Configure IMP

New IMPort Project		_		×
Link Data				
Cross-Linking:	Name Distance		Add	
Hydrogen Exchange:	Name		Add	
Covalent Labeling:	Name		Add	
Electron Microscopy:	Name		Add	
	Back		Next	

- Add Proteins.
- Add Protein Topology
- Add Link Data
- HX-XL Classification
- Configure IMP

া New IMPort Project			_		Х
Link Data					
Cross-Linking:	Name	Distance		Add	
	C:\tmp\mss_proj\hxxl_histoslider_data \BSA_xlinks_4.csv	10			
Hydrogen Exchange:	Name			Add	
	C:\tmp\mss_proj\hxxl_histoslider_data\data\hx \EG5_hx_sample.csv				
Covalent Labeling:	Name			Add	
Electron Microscopy:	Name			Add	
		Back		Next	

- Add Proteins.
- Add Protein Topology
- Add Link Data
- HX-XL Classification
- Configure IMP

- Add Proteins.
- Add Protein Topology
- Add Link Data
- HX-XL Classification
- Configure IMP

🛀 New IMPort Project		_		×
Configure IMP				
Rigid Body Assignment	Increment by Topology Source File (PDB)			~
Super Rigid Body Assignment	Increment by Protein Source File (FASTA/PDB)			¥
States:	1			
Sampling Frames:	100			
Replicates:	1			
Cores:	16			
	Back		Export	

- Add Proteins.
- Add Protein Topology
- Add Link Data
- HX-XL Classification
- Configure IMP

IMProv Data File and Script Bundle - Export

- Generate the IMProv Export Bundle.
- Navigate the folders.
- Review the Topology and ConfigImp.yaml files.

Folder Hierarchy

data

- cl => crosslink
- em => electron density maps
- fasta => protein amino acid sequence
- hx => hydrogen exchange
- topo => topology file
- xl => cross linking
- xtal => xray-crystallography

imp_model

config and driver scripts

Completion of IMProv wizard steps

- Review output generated.
- Prepare output for deployment.

Amendments

- Modifying the Topology and ConfigImp.yaml is an iterative process.
- Re-open an existing IMProv project and make the edits you require.
- In the final step you can perform the export again to capture the updates.

IMProv export bundle

- Review Topology.txt and ConfigImp.yaml
- Review python driver scripts

Solu	ition Ex	plorer - Folder View 🔹 👎 🗙
G	0 🕯) 🛱 • 🛼 🕐 🗿 🕼 🗕
Sea	rch Solu	ution Explorer - Folder View (Ctrl+;)
	🛋 im	p_model (C:\Users\troy.pells\Documents\GitHub\imp
	â	array_job.sh
	<u>a</u> 📑	aws_config_mpi_awsbatch.txt
	<u>a</u> 🖹	aws_mpi_setup_readme.txt
	â	aws_mss_prep_step1.sh
	â	aws_mss_prep_step2.sh
	â	aws_mss_prep_step3.sh
	â	aws_run_onenode.sh
	â	aws_submit_mpi.sh
	â 🗋	ConfigImp.yaml
	â 🗋	ConfigImpHx.yaml
	ê 👌	create_gmm.py
	ê 🔁	imp_job_run.py
	â	mjob_run.sh
	â	mjob_run_cedar.sh
	6	param.sh
	ê 👌	prep_hyperp_imp_hx_v2_12_0ux.py
	ê 👌	prep_hyperp_imp_v2.py
	ê 👌	prep_hyperp_imp_v2_11_1ux.py
	ê 👌	prep_hyperp_imp_v2_12_0ux.py
	a 🔁	prep_hyperp_imp_v2ux.py
	â 🗎	readme_setup_aws.txt
	ê 🗎	readme_setup_cedar.txt
	â	run_imp.slurm
	<u>6</u> 🗞	run_py.bat
	â	uoc_mss_prep_step1.sh
	â	uoc_mss_prep_step1b.sh
	â	uoc_mss_prep_step2.sn
	â	uoc_mss_prep_step3.sh

ConfigImp.yaml and driver scripts

- Sample PRC2 project contains the ConfigImp.yaml and driver scripts
- We also find setup scripts for Cedar and AWS. These are discussed later, when we cover the deployment steps.

ConfigImp.yaml

ConfigImp.y	/aml → X
1	title: PRC2 with HX and EM
2	date: 2019-07-10T12:10:31.1913934-06:00
3	cores: 2
4	replicates: 1
5	states: 1
6	sampling_frame: 20
7	<pre>output_dir: ./imp_model</pre>
8	data_directory:/
9	<pre>topology_file: Topology.txt</pre>
10	<pre>target_gmm_file: gmm_file_ouput.txt</pre>
11	crosslinkdb:
12	 refid: PRC2_DSS_unprotected.csv
13	 refid: PRC2_DS5_standard.csv
14	 refid: PRC2_DSS_protected.csv
15	 refid: PRC2_BS3_standard.csv
16	 refid: PRC2_BS3_unprotected.csv
17	 refid: PRC2_BS3_protected.csv
18	xl_groupA:
19	- refid: PRC2_DSS_unprotected.csv
20	length: 21.0
21	slope: 0.01
22	resolution: 1.0
23	label: PRC2_DSS_unprotected
24	weight: 1.0
25	crosslink_distance: 20.0
26	- refid: PRC2_DSS_standard.csv

61 xl dbA: 63 set protein1 key: Protein 1 64 set_protein2_key: Protein 2 65 set site pairs key: Selected Sites 66 set_unique_id_key: Peptide ID 67 ⊡- refid: PRC2_DSS_standard.csv set_protein1_key: Protein 1 68 69 set protein2 key: Protein 2 70 set_site_pairs_key: Selected Sites 71 set_unique_id_key: Peptide ID 72 - refid: PRC2_DSS_protected.csv 73 set protein1 key: Protein 1 set_protein2_key: Protein 2 74 75 set site pairs key: Selected Sites 76 set_unique_id_key: Peptide ID 77 E- refid: PRC2_BS3_standard.csv 78 set_protein1_key: Protein 1 79 set protein2 key: Protein 2 80 set_site_pairs_key: Selected Sites 81 set unique id key: Peptide ID 82 - refid: PRC2_BS3_unprotected.csv 83 set protein1 key: Protein 1 84 set_protein2_key: Protein 2 85 set_site_pairs_key: Selected Sites 86 set unique id key: Peptide ID 87 - refid: PRC2 BS3 protected.csv 88 set_protein1_key: Protein 1 89 set_protein2_key: Protein 2 90 set_site_pairs_key: Selected Sites 91 set_unique_id_key: Peptide ID 92 ⊡degree of freedom: 93 max rb trans: 4.0 94 max_rb_rot: 0.3 95 max_bead_trans: 4.0 96 max srb trans: 4.0 97 max srb rot: 0.3

imp_job_run.py and mjob_run.sh scripts

```
# usage: mjob run.sh 6
                                                                                                                                               4 # first param is the replicate number
                                                                                                                                                   num repl=$1
                                                                                                                                               5
                                                                                                                                                   repl_name=imp_model $1
                                                           imp_job_run.py 👳 🗙 ConfigImp.yaml
        run_imp.slurm prep_hyperp_imp_v2.py mjob_run.sh
                                                                                                                                               7
                                                                                                                                                   echo "replicates number:"$repl_name
                                                                                                                                               8 #set defaults for cores and replicates
 1
    #!/usr/bin/python3
                                                                                                                                                   export cores="16"
                                                                                                                                               9
                                                                                                                                               10
                                                                                                                                                   #cd ../
3
    import os, subprocess, platform, argparse
                                                                                                                                               11
                                                                                                                                                   #cp -R imp_model imp_model_2
 1
                                                                                                                                               12
                                                                                                                                                   #cp -R imp model imp model 3
5 # default paths to anaconda and data roots
                                                                                                                                               13
                                                                                                                                                   #sed -e 's/:[^:\/\/]/="/g;s/$/"/g;s/ *=/=/g' ConfigImp.yaml > param.sh
6
    ANACONDA_DIR = os.path.join("C:\\", "Apps", "Anaconda3") if platform.system() == "Windows" else os.path.join("~", "anaconda3")
                                                                                                                                               14 cat ConfigImp.yaml | grep -e cores | sed -e 's/:[^:\/\/]/="/g;s/$/"/g;s/ *=/=/g' | sed -e 's/ //g' | sed -e 's///g' > para
7
    DEFAULT_COUNT, DEFAULT_NAME, DEFAULT_CONFIG = 1, "DemoImpModel", "ConfigImp.yaml"
                                                                                                                                               15 chmod 755 param, sh
8
                                                                                                                                               16 #source the env vars from param.sh as these are exported
    # parse args for path replacements & args for the job start command execution
9
                                                                                                                                                   . param.sh
                                                                                                                                               17
10
    parser = argparse.ArgumentParser()
                                                                                                                                               18 echo "cores:"$cores
11 parser.add_argument("--anaconda_dir", type=str, help="path to the root directory of your Anaconda installation")
                                                                                                                                               19 # construct slurm file
12 parser.add_argument("--count", type=int, help="count variable for IMP")
                                                                                                                                               20
                                                                                                                                                   cat << EOF > param_prep.slurm
13 parser.add argument("--name", type=str, help="Name of job")
                                                                                                                                               21
                                                                                                                                                  #!/bin/bash
                                                                                                                                               22 # example slurm job script setup to run on for example UoC ARC
14 parser.add_argument("--config", type=str, help="config file name (within imp_model directory)")
                                                                                                                                                   #SBATCH -- job-name=SLURM_imp
                                                                                                                                               23
15 parser.add_argument("--output_file", type=str, help="file to redirect imp script execution into, rather than stdout")
                                                                                                                                               24
                                                                                                                                                   #SBATCH --nodes=1
16
    args = parser.parse_args()
                                                                                                                                               25
                                                                                                                                                   #SBATCH --ntasks-per-node=$cores
17
                                                                                                                                               26
                                                                                                                                                   #SBATCH --cpus-per-task=1
18 ⊡if args.anaconda_dir is not None:
                                                                                                                                              27 #SBATCH --mem=32G
19
        ANACONDA DIR = args.anaconda dir
                                                                                                                                               28
                                                                                                                                                   #SBATCH --time=00:30:00
20
                                                                                                                                               29
                                                                                                                                                   #SBATCH --partition=cpu2019
21 outfile = args.output_file if args.output_file is not None else "prep_hyperp_imp_v2_trace.txt"
                                                                                                                                               30
31
                                                                                                                                               32
23 :
        subprocess.run(
24 =
                                                                                                                                               33
             "{0} prep_hyperp_imp_v2.py --count={1} --name={2} --config={3}".format(
                                                                                                                                                   # mpiexec python prep_hyperp_imp_v2ux.py --count=1 --name=DemoImpModel --config=ConfigImp.yaml
25
                os.path.join(ANACONDA_DIR, "python.exe"),
                                                                                                                                               34
                                                                                                                                               35
                                                                                                                                                   srun python prep_hyperp_imp_v2ux.py --count=1 --name=DemoImpModel --config=ConfigImp.yaml
26
                args.count if args.count is not None else DEFAULT_COUNT,
                                                                                                                                               36
27
                args.name if args.name is not None else DEFAULT_NAME,
                                                                                                                                               37
                                                                                                                                                   echo "Job Finished"
28
                args.config if args.config is not None else DEFAULT CONFIG,
                                                                                                                                               38
                                                                                                                                                   EOF
29
            ),
                                                                                                                                               39
                                                                                                                                                  # nix line ending and not wnd
30
            stdout=f,
                                                                                                                                               40
                                                                                                                                                   sed -e "s/\r//" param_prep.slurm > run_imp.slurm
31
            stderr=(subprocess.STDOUT)
                                                                                                                                               41 #clean up intermedate files
32
                                                                                                                                               42 rm -rf param prep.slurm
                                                                                                                                               43
                                                                                                                                                   rm -rf param.sh
                                                                                                                                               44 # from imp_model folder we clone the driver scripts
                                                                                                                                               45 cd ../
                                                                                                                                               46 cp -R imp model $repl name
```

```
47 cd $repl_name
```

```
48 #sbatch run_imp.slurm
```

run_imp.slurm

!/bin/bash -x

prep_hyperp_imp_v2.py

mjob run.sh 🗢 🗙 imp job run.py

ConfigImp.yaml

prep_hyperp_imp_v2.py script content

prep_hyperp_imp_v2.py
 load_yaml_config(config_file)
 load_config(config_file, title)
 seed(config, title)
 wkdir(adddirname)
 wodel_pipeline(project)
 ______ model_pipeline(project)
 ______ get_xldbkc(self)
 ______ get_database(self)
 ______ get_database(self)
 ______ prep_hyperparam(count, name, config)

ology.txt run_imp.slurm prep_hyperp_imp_v2.py + 🗙 mjob_run.sh imp_job_run.py ConfigImp.yaml 2 3 FILE: prep_hyperp_imp_v2.py 4 # USAGE: C:\apps\Anaconda3\python.exe prep_hyperp_imp_v2.py --count=1 --name=DemoImpModel --config="ConfigImp.yam1" > prep_hyperp_imp_v2_trace.txt 2>&1 5 # 6 7 # DESCRIPTION: IMP (integrative modeling platform) driver script configured with ConfigImp.yaml 8 # Python Modeling Interface (PMI) ; https://integrativemodeling.org/ 9 -++ 10 OPTIONS: ---11 # REQUIREMENTS: ---12 # BUGS: ---13 # NOTES: ----14 # AUTHOR: MassSpecStudio Develoment Team. 15 # ORGANIZATION: 16 # VERSION: 2.0 17 # CREATED: 06/16/2019 12:00:00 18 # REVISION: ---19 #=== 20 21 import optparse 22 import logging 23 import time 24 import yaml 25 26 import IMP 27 import IMP.core import IMP.algebra 28 29 import IMP.atom 30 import IMP.container 31 32 import IMP.pmi.restraints.crosslinking 33 import IMP.pmi.restraints.stereochemistry 34 import IMP.pmi.restraints.em 35 import IMP.pmi.restraints.basic 36 import IMP.pmi.representation 37 import IMP.pmi.tools 38 import IMP.pmi.samplers 39 import IMP.pmi.output import IMP.pmi.macros 40 41 import IMP.pmi.topology 42 43 import os 44 import sys 45 46 #import IMP 47 import IMP.pmi 48 import IMP.pmi.io 49 import IMP.pmi.io.crosslink 50 #import IMP.pmi.topology 51 #import IMP.pmi.macros 52 #import IMP.pmi.restraints.stereochemistry 53 #import IMP.pmi.restraints.em 54 from IMP.pmi.restraints.crosslinking import CrossLinkingMassSpectrometryRestraint as XLRestraint

load_config

prep_hyperp_imp_v2.py
 load_yaml_config(config_file)
 load_config(config_file, title)
 seed(config, title)
 wkdir(adddirname)
 model_pipeline(project)
 ______ model_pipeline(project)
 ______ get_xldbkc(self)
 ______ parse_infile(self)
 ______ get_database(self)
 ______ prep_hyperparam(count, name, config)

def load_config(config_file, title):

Parses a project.yaml file and uses the contents to set the current execution context.

Optionally injects additional values https://martin-thoma.com/configuration-files-in-python/

https://github.com/beetbox/confuse https://hackersandslackers.com/simplify-your-python-projects-configuration/

....

logging.info('config filename %s!' % config_file)
#obj = yaml.safe_load(config_file)
cfg = load_yaml_config(config_file)
for section in cfg:
 logging.info(section + ' %s!' % cfg[section])

if section == "xl_groupA":

for i in cfg[section]: logging.info(i) for k, v in i.items(): logging.info(k +': %s!' % v)

if section == "xl_dbA":

=

for i in cfg[section]: logging.info(i) for k, v in i.items(): logging.info(k +': %s!' % v)

if section == "crosslinkdb":

for i in cfg[section]: logging.info(i) for k, v in i.items(): logging.info(k +': %s!' % v)

if section == "degree_of_freedom":
 \$logging.info(subxl_group + ' %s!' % cfg[section])
 for i in cfg[section]:
 logging.info(i +': %s!' % cfg[section][i])

#print(cfg['topology_file'])

#print(cfg('title'])
logging.info('given topology_file %s!' % cfg['topology_file'])
logging.info('given title %s!' % cfg['title'])

perform pipeline setup
model_pipeline(cfg)

]def seed(config, title):

Monte-Carlo Sampling

- prep_hyperp_imp_v2.py
 load_yaml_config(config_file)
 load_config(config_file, title)
 seed(config, title)
 whodr(adddirname)
 model_pipeline(project)
 ______ model_sipeline(project)
 ______ get_xldbkc(self)
 ______ parse infile(self)
 - parse_inflie(self)
 - get_database(self)
 - prep_hyperparam(count, name, config)

Monte-Carlo Sampling

*----

Set MC Sampling Parameters

\$num_frames = 20000
num_frames = 50
\$if '--test' in sys.argv: num_frames=100
num_mc_steps = 10

logging.info('set states %s!' % project["states"])
logging.info('set sampling_frame %s!' % project["sampling_frame"])
logging.info('set num_frames %s!' % num_frames)

logging.info('set output_dir %s!' % project["output_dir"])
logging.info('set num_mc_steps %s!' % num_mc_steps)

#TODO: add config setup for these fixed values

logging.info('set monte_carlo_temperature=1.0')
logging.info('set simulated_annealing_Ture')
logging.info('set simulated_annealing_minimum_temperature=1.0')
logging.info('set simulated_annealing_minimum_temperature=2.5')
logging.info('set simulated_annealing_minimum_temperature=1.0')
logging.info('set simulated_annealing_minimum_temperature=0.0')
logging.info('set replica_exchange_minimum_temperature=0.0')
logging.info('set replica_exchange_minimum_temperature=2.5')
logging.info('set number_of_best_scoring_models=0')
logging.info('set number_carlo_steps %s!' % num_frames)
logging.info('set number_carlo_steps %s!' % num_frames)
logging.info('set number_of_frames %s!' % num_frames)

https://integrativemodeling.org/2.10.1/doc/ref/classIMP_1 lpmi_1 lmacros_1 lReplicaExchange0.htmlfa239c4009cc04c7023673047959579744 # This object defines all components to be sampled as well as the sampling protocol mcl=IMP.pmi.macros.ReplicaExchange0(mdl, root hier=root hier. monte_carlo_sample_objects=dof.get_movers(), output_objects=outputobjects, monte_carlo_temperature=1.0, simulated annealing=True, simulated_annealing_minimum_temperature=1.0, simulated_annealing_maximum_temperature=2.5, simulated_annealing_minimum_temperature_nframes=200, simulated_annealing_maximum_temperature_nframes=20, replica exchange minimum temperature=1.0, replica_exchange_maximum_temperature=2.5, number_of_best_scoring_models=0, monte_carlo_steps=num_mc_steps, \$keep at 10 number_of_frames=num_frames, global_output_directory=project["output_dir"], test_mode=False)

start sampling

ReplicaExchange

prep_hyperp_imp_v2.py
 load_yaml_config(config_file)
 load_config(config_file, title)
 seed(config, title)
 wkdir(adddirname)
 model_pipeline(project)
 ______ model_pipeline(project)
 ______ get_xldbkc(self)
 ______ parse_infile(self)
 ______ get_database(self)
 ______ prep_hyperparam(count, name, config)

\$TODO: add config setup for these fixed values logging.info('set monte_carlo_temperature=1.0') logging.info('set simulated_annealing=True') logging.info('set simulated_annealing_minimum_temperature=2.5') logging.info('set simulated_annealing_maximum_temperature_nframes=200') logging.info('set simulated_annealing_maximum_temperature_nframes=200') logging.info('set simulated_annealing_maximum_temperature=1.0') logging.info('set replica_exchange_minimum_temperature=2.5') logging.info('set replica_exchange_maximum_temperature=2.5') logging.info('set number_of_bet_scoring_models=0') logging.info('set number_of_trames %s!' % num_frames) logging.info('set number_of_trames %s!' % num_frames)

https://integrativemodeling.org/2.10.1/doc/ref/classIMP 1 lpmi 1 lmacros 1 lReplicaExchange0.html#a239c4009cc04c70236730479f9f79744
This object defines all components to be sampled as well as the sampling protocol

mcl=IMP.pmi.macros.ReplicaExchange0(mdl, root_hier=root_hier, monte_carlo_sample_objects=dof.get_movers(), output_objects=outputobjects, monte_carlo_temperature=1.0, simulated_annealing=True, simulated annealing minimum temperature=1.0, simulated annealing maximum temperature=2.5, simulated annealing minimum temperature nframes=200, simulated_annealing_maximum_temperature_nframes=20, replica_exchange_minimum_temperature=1.0, replica_exchange_maximum_temperature=2.5, number of best scoring models=0, monte carlo steps=num mc steps, \$keep at 10 number_of_frames=num_frames, global_output_directory=project["output_dir"], test_mode=False)

start sampling
mcl.execute macro()

#logging.info("CENT", gent.evaluate()); #logging.info("XLI", xll.evaluate(), xl2.evaluate()); for i in range(len(xLList)): logging.info(xLList[i].evaluate()) logging.info("CE", cr.evaluate()); logging.info("CE", cr.evaluate());

topology.txt data dictionary

A	В	C
empty_field		
molecule_name	EZH2	EED
color	black	black
fasta_fn	prc2_pentamer.fasta	prc2_pentamer.fas
fasta_id	EZH2	EED
pdb_fn	5hyn_ABC.pdb	5hyn_ABC.pdb
chain	А	В
residue_range	1,END	1,END
pdb_offset	0	2
bead_size	10	10
em_residues	10	10
rigid_body	1	1
super_rigid_body	1	1
chain_of_super_rigid_bodies		
flags		

A	B	с	D	E	F	G	н	- F.	1	ĸ	L	M	N	0
empty_field	molecule_name	color	fasta_fn	fasta_i	d pdb_fn	chain	residue_range	pdb_offset	bead_size	em_residues	rigid_body	super_rigid_body	chain_of_super_rigid_bodies	flags
	EZH2	black	prc2_pentamer.fasta	EZH2	Shyn_ABC.pdb	A	1,END	0	1	0 10		1 1		
	EED	black	prc2_pentamer.fasta	EED	Shyn_ABC.pdb	8	1,END	2	2 1	0 10	E 1	1 1		
	SUZ12	black	prc2_pentamer.fasta	SUZ12	RBBP4-threaded2yb8_SUZ12-fragment.pdb	в	1,560) (1	0 10		2 1		
	SUZ12	black	prc2_pentamer.fasta	SUZ12	Shyn_ABC.pdb	¢	561,END	1	1	0 10	6 3	L 1	1	
	R88P4	black	prc2_pentamer.fasta	RBBP4	RBBP4-threaded2yb8_SUZ12-fragment.pdb	A	1,END	0	1	0 10	1	2 1		
	AEBP2	black	prc2_pentamer.fasta	AEBP2	AEBP2_HMM_A_69-79.pdb	A	1,79	0	1	0 10		3 2	2	
	AEBP2	black	prc2_pentamer.fasta	AEBP2	AEBP2_HMM_A_107-117.pdb	Α	80,117	7 0	1	0 10		1 2	2	
	AEBP2	black	prc2_pentamer.fasta	AEBP2	AEBP2_HMM_A_136-146.pdb	Α	118,146	5 0	1	0 10	1	5 2	1	
	AEBP2	black	prc2_pentamer.fasta	AEBP2	AEBP2_HMM_A_166-175.pdb	A	147,175	5 0	1	0 10		5 2	2	
	AEBP2	black	prc2_pentamer.fasta	AEBP2	AEBP2_HMM_A_229-243.pdb	Α	176,END	0	1	0 14		7 2	2	

data folder content

olut	ion Ex	plor	er - Fo	older	View				• # >	¢
0	0 6	6		5	0 1	1				
eard	h Solu	ution	Expl	orer -	Folde	er Viev	v (Ctrl+;	;)	P	+
4	🗐 da	ta (C	:\Use	rs\tro	y.pel	ls\Doc	uments	s\GitHub\	imp_mss	stu
Þ	-	data	з							
	1	em								
		D	Ciferr	I_CEN	A_PRO	C2.ma	p.mrc			
	a		gmm	_file_	ouput	t.txt				
-	-	fast	a							
	8	0	prc2_	penta	mer.f	fasta				
		hx								
	ũ	X	HX_P	RC2.c	sv					
-		top	0							
	+	X	~STop	polog	y.xlsx	¢				
	+	0	Topol	ogy.t	ab					
		E	Topol	ogy.t	xt					
	+	X	Topol	ogy.x	Isx					
-	-	x		-						
	0	X	PRC2	_BS3_	prote	cted.c	SV			
	8	X	PRC2	BS3_	stand	lard.cs	v			
	G	X	PRC2	B23	unpre	otecte	d.csv			
		X	PRC2	DSS_	prote	ected.o	:5V			
		X	PRCZ	DS2	stand	lard.cs	N.			
		X	PRCZ	D22	unpr	otecte	d.csv			
P		xI_v	2							
-	-	xtal	E hu an	ARC	a dh					
			AFDD	ADC.	pab	107 1	17			
			AEDP		INT A	126.1	17.pab			
	0		AEDP		IM A	166.1	75 ndb			
	0		AERD		MA A	220.2	13.pdb			
			AERD		M A	60.70				
			DDDD	4_thr	aded	_09-79	SU1712-4	fragment	ndh	
	. 67	0	NUDP	- unit	aueu	icyno_	20L12-1	nayment	pub	

PRC2_	BS3_	protected.csv	HX_PRC2.csv	gmm_file_ouput.txt	prc2_pentamer.fasta	5hyn_ABC.pdb	Topology.txt → ×				
	1	empty_field	molecule_name c	olor fasta_fn fasta_id p	db_fn chain residue_ra	ange pdb_offset bead_	size em_residues	rigid_body super_	rigid_body chain_o	f_super_rigid_bodi	ies fla
	2	EZH2 black	prc2_pentamer.f	asta EZH2 5hyn_ABC.pdb A	1,END 0 10 10 1 1						
	3	EED black	prc2_pentamer.fa	sta EED Shyn_ABC.pdb B 1	END 2 10 10 1 1						
	4	SUZ12 blac	k prc2_pentamer.	fasta SUZ12 RBBP4-thread	ed2yb8_SUZ12-fragment.	.pdb B 1,560 0 10 10	2 1				
	5	SUZ12 blac	k prc2_pentamer.	fasta SUZ12 5hyn_ABC.pdb	C 561, END 1 10 10 1:	1					
	6	RBBP4 blac	k prc2_pentamer.	fasta RBBP4 RBBP4-thread	ed2yb8_SUZ12-fragment.	.pdb A 1, END 0 10 10	2 1				
	7	AEBP2 blac	k prc2_pentamer.	fasta AEBP2 AEBP2_HMM_A_	69-79.pdb A 1,79 0 10	10 3 2					
	8	AEBP2 blac	k prc2_pentamer.	fasta AEBP2 AEBP2_HMM_A	107-117.pdb A 80,117	0 10 10 4 2					
	9	AEBP2 blac	k prc2_pentamer.	fasta AEBP2 AEBP2_HMM_A	136-146.pdb A 118,146	0 10 10 5 2					
	10	AEBP2 blac	k prc2_pentamer.	fasta AEBP2 AEBP2_HMM_A_	166-175.pdb A 147,175	0 10 10 6 2					
	11	AEBP2 blac	k prc2_pentamer.	fasta AEBP2 AEBP2_HMM_A_	229-243.pdb A 176,END	0 10 10 7 2					
	12										

IMProv lifecycle

• Prepare Export bundle using MassSpecStudio wizard steps

I

- Prepare Deployment
- Run Modeling job
- Review

Example 2: IMProv PRC2

• Present another IMProv project

Solution E	kplorer - Folder View 👻 👎 🗙
004) 🗄 • 5 C @ @
Search Sol	ution Explorer - Folder View (Ctrl+;)
🔺 🛋 da	ata (C:\Users\troy.pells\Documents\GitHub\imp_msst
Þ 📫	data
4 🧉	em
3	Ciferri_CEM_PRC2.map.mrc
-	a 📄 gmm_file_ouput.txt
4 5	fasta
1	a 🗋 prc2_pentamer.fasta
4 🖷	hx
3	HX_PRC2.csv
4 🖷	topo
	+ 🗶 ~\$Topology.xlsx
	+ D Topology.tab
9	E Topology.txt
1	+ 🔀 Topology.xlsx
	xl
	PRC2_BS3_protected.csv
	PRC2_BS3_standard.csv
3	PRC2_BS3_unprotected.csv
	PRC2_DSS_protected.csv
	RC2_DSS_standard.csv
100	RC2_DSS_unprotected.csv
P	xI_v2
4	xtal
	5hyn_ABC.pdb
	AEBP2_HMM_A_107-117.pdb
	AEBP2_HMM_A_136-146.pdb
	AEBP2_HMM_A_166-175.pdb
	AEBP2_HMM_A_229-243.pdb
	ALEPZ_HMM_A_69-79.pdb
1	RBBP4-threaded2yb8_SUZ12-fragment.pdb

🐴 New IMP Project

- 🗆 🗙

Add Proteins

To add reference sequences, drag/drop FASTA or PDB files, or use the action buttons

	Name	Sequence	File Path		Topology	New
/	EZH2	Hover to view	C:\Users\MS Studio \Documents\FASTAs\PRC2 pentamer (short name).fasta	Browse	Manage	Edit Select FAS
/	EED	Hover to view	C:\Users\MS Studio \Documents\FASTAs\PRC2 pentamer (short name).fasta	Browse	Manage	Select PI Fetch PI
/	SUZ12	Hover to view	C:\Users\MS Studio \Documents\FASTAs\PRC2 pentamer (short name).fasta	Browse	Manage	Remo
/	RBBP4	Hover to view	C:\Users\MS Studio \Documents\FASTAs\PRC2 pentamer (short name).fasta	Browse	Manage	
/	AEBP2	Hover to view	C:\Users\MS Studio \Documents\FASTAs\PRC2 pentamer (short name).fasta	Browse	Manage	

Wizard Steps

• Add Proteins.

- Add Protein Topology
- Add Link Data
- HX-XL Classification
- Configure IMP

M탄 Topology							– 🗆 🗙	Γ	🛀 Add Topology	– 🗆 X
Protein Name:	EZH2								PDB File:	2yb8.pdb Browse
Sequence:	Hover to view								PDB Offset:	7
PDB File	PDB Offset	Chain	Rigid Body ID	Seq. Range	Bead Size	EM Residue/Gaussian	Add		Chain ID:	В
5hyn_ABC.p db	5	Α	0	5 - 250	10	10	Edit		Rigid Body:	0
							Remove		Sequence Start:	300
							Fetch PDB(s)		Sequence End:	746
									Bead Size:	5
<						>			EM Residues per Gaussian:	10
							_		Color:	MediumBlue 💌
						Cancel	OK			Cancel OK

- Add Proteins.
- Add Protein Topology
- Add Link Data
- HX-XL Classification
- Configure IMP

New IMP Project			-		×
Link Data					
Cross-Linking:	Name	Distance		Add	
	C:\Users\MS Studio\Documents\!MSS IMP\PRC2 Demo\XL IMP Export\IMP Demo_BS3.csv	10.0			
	C:\Users\MS Studio\Documents\!MSS IMP\PRC2 Demo\XL IMP Export\IMP Demo_DSS.csv	10.0			
Hydrogen Exchange:	Name			Add	
.,	C:\Users\MS Studio\Documents\!MSS IMP\PRC2 Demo\XL IMP Export\HX_data.csv.csv			Add	
Covalent Labling:	Name			Add	
Electron Microscopy:	Name C:\Users\MS Studio\Documents\!MSS IMP\PRC2 Demo\XL IMP Export\Ciferri_PRC2.50.gmm.	txt		Add	
	[Back		Next	

- Add Proteins.
- Add Protein Topology
- Add Link Data
- HX-XL Classification
- Configure IMP

Mew IMP Project		-		×
Configure IMP				
Rigid Body Assignment	Increment by Topology Source File (PDB)			۷
Super Rigid Body Assignment	Increment by Protein Source File (FASTA/PDB)			~
States:	1			
Sampling Frames:	10000			
Export Directory:	C:\Users\MS Studio\Documents\Mass Spec Studio Projects\Integrative Modelling Platform Project\Integra Modelling Platform Experiment\Results	tive	Bro	owse

Back

Export

- Add Proteins.
- Add Protein Topology
- Add Link Data
- HX-XL Classification
- Configure IMP

Final remarks on IMProv

• We have seen two IMProv projects.

Deployment of the Project

- Deployment follows a 3 step setup process.
- Deployment to Cedar.
- Deployment to AWS.

Deployment steps

.

- Launch the modeling run on a multi-cpu machine
- MPI is the message passing interface used to leverage multi-cpu machine when performing the Monte-Carlo sampling.
- The step1 through step3 scripts mentioned are provided in the sample PRC2 project on github. The link is given in the reference section at the end.

Deployment: Cedar

- The github repo for imp_msstudio_init contains the online tutorials together with the PRC2 sample project. The bootstrap scripts are also available.
- <u>https://github.com/pellst/imp_msstudio_init</u>

- IMProv_on_Cedar_tut.md: <u>https://github.com/pellst/imp_msstudio_init/blob/master/IMProv_on_Cedar_tut.md</u>
- #### get the setup script from github gist and review before running:
- ~~~
- curl -LOk https://gist.githubusercontent.com/pellst/4853822ea5ca74785af61d0ad39cf84d/ra w/uoc_mss_prep_step1.sh
- chmod 755 uoc_mss_prep_step1.sh
- ~~~
- #### run the script uoc_mss_prep_step1.sh in order to get the sample folders and scripts setup
- ~~~
- ./uoc_mss_prep_step1.sh
- ~~~
- ##### in the folder /scratch/\$USER/imp/imp_msstudio_initmaster/mss_out/imp_model, the following shell scripts are now available
- ~~~
- uoc_mss_prep_step1.sh
- uoc_mss_prep_step2.sh
- uoc_mss_prep_step3.sh
- ~~~

Deployment: AWS

- The github repo for imp_msstudio_init contains the online tutorials together with the PRC2 sample project. The bootstrap scripts are also available.
- https://github.com/pellst/imp_msstudio_init
- IMProv_on_AWS_tut.md: <u>https://github.com/pellst/imp_msstudio_init/b</u> <u>lob/master/IMProv_on_AWS_tut.md</u>
- # make use of this gist to get the prep_step* shell scripts located here
- # /shared/imp/imp_msstudio_init-master/mss_out/imp_model
- curl -LOk https://gist.githubusercontent.com/pellst/9f7ad519133dae87f8f813b506b45aac/raw/aws_ms
 s_prep_step1.sh
- chmod 755 aws_mss_prep_step1.sh
- ./aws_mss_prep_step1.sh
- # prepare anaconda install
- #/shared/imp/imp_msstudio_init-master/mss_out/imp_model/aws_mss_prep_step2.sh
- #/shared/imp/imp_msstudio_init-master/mss_out/imp_model/aws_mss_prep_step3.sh

- A new folder is created with the run number (imp_model_nn) as a copy of the imp_model folder content.
- The data folder is referenced and is not duplicated when performing multiple run's in parallel on a HPC platform (replicate run's). Avoid confusion with MPI which will be performed within a single run and hence each instance thereof in a parallel run of for example 3 modeling jobs at the same time (ie: 3 replicates each performing independent MC sampling).
- A subfolder of imp_model_nn is the output folder which has sub-folders
 - pdbs
 - rmfs
- When run on 16 cpu. There will be one .rmf3 file per cpu (0 through 15)
- stat.*.out and stat_replica.*.out files

Modeling Run Review

Note that the modeling run generates several files in the imp_model_nn folder (where nn is the run number given)

- included.*.db
- excluded.*.db
- missing.*.db

The trace files are created as

- prep_hyperp_imp_v2.log
- slurm-nnnnnn.out

Deployment: Wrap-up

- Deployment can be to your local PC, AWS or on Compute Canada HPC platform (Cedar).
- Performing a test run with the sample PRC2 project enables one to validate the installation and confirm that IMP together with Anaconda are correctly installed.
- Your own IMProv project can then be copied to the deployment folder and launch a modeling run. Start with 100 frames for testing purposes.
- Check the output folder and log files to confirm that MPI is using the cpu count you specified.

Summary

- IMProv lifecyle.
- Online guides and tutorials.
 - IMProv_msstudio_tut.md (tiny url)
 - uml_activity_diag_improv.svg
 - IMProv_on_AWS_tut.md
 - IMProv_on_Cedar_tut.md

Assessment and Evaluation

- How is the python driver script and IMPConfig.yaml a convenience?
 what would you need to do if there are not available?
- IMProv comprises file preparation and deployment. How would you go about performing each?
- Did you find this guided tutorial helpful?

Abbreviations

- Cryo-EM: cryoelectron microscopy | https://www.sciencedirect.com/science/article/pii/S0304416517302374
- **FDR**: False Discovery Rate | https://www.bioinfor.com/fdr-tutorial/
- HPC: High Performance Computing | https://docs.computecanada.ca/wiki/Getting_started
- HX-MS: Hydrogen eXchange Mass Spectrometry | https://neu.hxms.com/research/tutorial_theory.htm#:~:text=Hydrogen%20exchange%20(HX)%20combined%20with,of%20proteins%20and%20protein%20 structure.
- IMP: Integrative Modeling Platform | https://integrativemodeling.org/
- **PMI**: Python Modeling Interface | https://integrativemodeling.org/
- PRC2: Polycomb Repressive Complex 2 | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5008062/
- **SLURM**: Simple Linux Utility for Resource Management | https://en.wikipedia.org/wiki/Slurm_Workload_Manager
- XL-MS: Crosslinking Mass Spectrometry | https://www.technologynetworks.com/proteomics/articles/cross-linking-mass-spectrometry-a-key-player-in-thestructural-biologists-toolbox-322446
- FASTA: The FASTA format is sometimes also referred to as the "Pearson" format (after the author of the FASTA program and ditto format). |
 https://www.bioinformatics.nl/tools/crab_fasta.html; https://en.wikipedia.org/wiki/FASTA_format
- PDB: The Protein Data Bank (pdb) file format is a textual file format describing the three-dimensional structures of molecules held in the Protein Data Bank | https://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/introduction ; https://www.rcsb.org/
- AWS: Amazon Web Services | https://aws.amazon.com/console/
- **Cedar**: Compute Canada HPC Cluster | https://status.computecanada.ca/
- Linux: Operating System, RedHat Enterprise Linux (or variants, such as CentOS or Scientific Linux) |
- MC: Monte Carlo Sampling

• References

- IMProv_msstudio_tut.md: https://github.com/pellst/imp_msstudio_init/blob/master/IMProv_msstudio_tut.md
- uml_activity_diag_improv.svg: https://raw.githubusercontent.com/pellst/imp_msstudio_init/master/uml_activity_diag_improv.svg
- IMProv_uml_diag.png: https://github.com/pellst/imp_msstudio_init/blob/master/IMProv_uml_diag.png
- IMProv_on_Cedar_tut.md: <u>https://github.com/pellst/imp_msstudio_init/blob/master/IMProv_on_Cedar_tut.md</u>
- IMProv_on_AWS_tut.md: <u>https://github.com/pellst/imp_msstudio_init/blob/master/IMProv_on_AWS_tut.md</u>